MECHANICS OF SOLIDS (ME F211)

Mechanics of Solids

Chapter-2

Introduction to Mechanics of
 deformable bodies

Introduction to Mechanics of deformable

 bodiesAnalysis of deformable bodies

- Identification of a system
- Simplification of this system

To develop model which can be analyzed
Steps to analyze system
Study of forces and equilibrium requirements
I Study of deformation and conditions of geometric fit
Application of force- deformation relations

Introduction to Mechanics of deformable

 bodies
Example:

A machine part carrying a load \boldsymbol{F} terminates in a piston which fits into a cavity, as shown in Fig. Within the cavity are two linear springs arranged coaxial with each other. We use the symbols k_{A} and k_{B} to denote the spring constants of the two springs in the cavity. When the springs are unloaded, each has the same length L. We wish to know how much of the load \boldsymbol{F} is carried by the spring with constant k_{A}

Introduction to Mechanics of deformable

 bodies
Solution

Steps to analyze the system

1. Selection of model of the actual system
2. Assumptions
3. Study of forces and equilibrium requirements
4. Study of deformation and conditions of geometric fit
5. Application of force- deformation relations to predict behavior of the system

Introduction to Mechanics of deformable

1. Selection of model

a. Identify the elements of proposed model of the system. In given problem the system has two elements one Piston and two springs
2. Assumptions
a. Assumed that the springs have been made with flat ends such that the compressing force which is distributed around the periphery of the spring, can be considered to act along the spring axis
b. Assumed that gravity effects can be ignored
c. Springs fit in the cavity perfectly without buckling

Introduction to Mechanics of deformable

 bodies3. Study of forces and equilibrium requirements
a. Isolate the elements from its surrounding i.e. Draw free body diagram
b. Apply equations of equilibrium i.e. $\sum F=0$ and $\sum M=0$

$$
\Sigma F_{y}=0=F_{A}+F_{B}-F \quad---1
$$

Free body Diagram

(a)

Introduction to Mechanics of deformable

4. Study of deformation and conditions of geometric fit
a. Find what are the requirements for geometric compatibility

$$
\delta_{A}=\delta_{B}=\delta \quad--2
$$

5. Application of force- deformation relations
a. The force in each spring is linearly proportional to the deflection of the spring, and the constant of proportionality is the spring constant

$$
\begin{array}{ll}
F_{A}=k_{A} \delta_{A} & ---3 \\
F_{B}=k_{B} \delta_{B} & ---4
\end{array}
$$

Introduction to Mechanics of deformable

By combining equation 1-4, we obtained desire result

$$
\frac{F_{A}}{F}=\frac{k_{A}}{k_{A}+k_{B}} \quad \text { and } \quad \frac{F_{B}}{F}=\frac{k_{B}}{k_{A}+k_{B}}
$$

Total deflection of piston

$$
\delta=\frac{F_{A}}{k_{A}}=\frac{F}{k_{A}+k_{B}}=\frac{F_{B}}{k_{B}}
$$

Introduction to Mechanics of deformable bodies

Example:

Let us consider a very light and stiff wood plank of length $2 L$. Two similar springs (spring constant k) are attached to it. The springs are of length h when the plank is resting on them. Let a man stands on middle of plank and begins to walk slowly towards one end. Find how far the
 man can walk before one end of the plank touches the ground

Introduction to Mechanics of deformable

 bodies
Solution:

1. Force equilibrium : Free body diagram

Reaction at point E will be zero since the plank is just touching the ground

$$
\begin{array}{llll}
\sum F_{y}=0 & \rightarrow & F_{C}+F_{D}-W=0 & --1 \\
\sum M_{@ C}=0 & \rightarrow & 2 \times a \times F_{D}-(a+b) \times W=0 & --2
\end{array}
$$

Introduction to Mechanics of deformable

 bodies2. Study of deformation and conditions of geometric fit When the plank remains straight, from the similar triangles

$$
\frac{h_{C}}{h_{D}}=\frac{L+a}{L-a} \quad---3
$$

The deflections of the springs are

$$
\delta_{C}=h-h_{C} \quad \text { and } \quad \delta_{D}=h-h_{D} \quad--4
$$

Introduction to Mechanics of deformable

 bodies3. Relations between forces and deflections

Since both springs are linear and have same spring constant,

$$
F_{C}=k \delta_{C} \quad \text { and } \quad F_{D}=k \delta_{D} \quad--5
$$

Equation 1 to 5 will give seven independent relations for seven unknowns, $F_{C}, F_{D}, h_{C}, h_{D}, \delta_{C}, \delta_{D}$, and b.

Solving these equations, we find that the value of b is given by

$$
b=\frac{a^{2}}{L}\left(\frac{2 k h}{W}-1\right)
$$

Introduction to Mechanics of deformable

Spring deflections

$$
\delta_{C}=\frac{W}{2 k}\left(1-\frac{b}{a}\right) \quad \text { and } \quad \delta_{D}=\frac{W}{2 k}\left(1+\frac{b}{a}\right)
$$

Highlights

\square It can be seen that δ_{D} is always positive in the sense defined in Fig d.
$\square \delta_{C}$ is positive as long as $\mathrm{b}<\mathrm{a}$. When $\mathrm{b}=\mathrm{a}$, the man is directly over the spring D, and, as would be expected, all the load is taken by the spring D, and the deflection and force in the spring C are zero.
\square When $\mathrm{b}>\mathrm{a}$, then δ_{C} is negative (i.e., the spring extends). In Fig. c we assumed that $\mathrm{b}>\mathrm{a}$ and that the spring C is compressed.

Introduction to Mechanics of deformable

UNIAXIAL LOADING \& DEFORMATION

The basic type of deformation which is considered in most of the problems in this chapter is shown in Figure (a).
\square Consider the deformation of three rods of same material, but different lengths and cross-sectional areas as shown.
\square Assume that for each bar the load is gradually increased from zero, and at
 several values of the load a elongation (δ) is measured.

Introduction to Mechanics of deformable

 bodies
UNIAXIAL LOADING \& DEFORMATION

\square If the maximum elongation is very small (less than 0.1 percent of the original length), then for most materials the results of the three tests will be represented by a plot like Figure (b) or like Figure (c).

Introduction to Mechanics of deformable

UNIAXIAL LOADING \& DEFORMATION

If If experimental data are re-plotted with load over area (P / A) as ordinate and elongation over original length (δ / L) as abscissa, the test results for the three bars can be represented by a single curve, as shown in Figure (d) or Figure (e).

Introduction to Mechanics of deformable

UNIAXIAL LOADING \& DEFORMATION

If If the uniaxial load-elongation relation of the material is linear as shown in Figure (d), then the slope of the curve is called the modulus of elasticity and is denoted by the symbol \boldsymbol{E}

$$
E=\frac{P / A}{\delta / L}=\frac{P L}{\delta A}
$$

The dimension of E is N / m^{2} or $\mathrm{N} / \mathrm{mm}^{2}$.
\square Deflection can be given in terms of \boldsymbol{E}

$$
\delta=\frac{P L}{A E}
$$

Introduction to Mechanics of deformable

 bodies
Statically determinate situations

These are the situations in which the forces can be obtained without reference to the geometry of deformation

Example

Figure shows a triangular frame supporting a load of 20 kN . Our aim is to estimate the displacement at the point D due to the 20 kN load carried by the chain hoist.

Introduction to Mechanics of deformable

bodies

Solution

1. Force equilibrium:

The forces in the members were determined in previous chapter

Introduction to Mechanics of deformable bodies

innovate
2. Force deformation relation

$$
\begin{aligned}
& \delta_{B D}=\left(\frac{P L}{A E}\right)_{B D}=\frac{28.3 \times 10^{3} \times 3 \sqrt{2} \times 10^{3}}{491 \times 205 \times 10^{3}}=1.19 \mathrm{~mm} \\
& --- \text { extension } \\
& \delta_{C D}=\left(\frac{P L}{A E}\right)_{C D}=\frac{20 \times 10^{3} \times 3 \times 10^{3}}{3200 \times 205 \times 10^{3}}=0.0915 \mathrm{~mm} \\
& \hline
\end{aligned}
$$

3. Geometric compatibility

\square Bars $B D$ and $C D$ move in such a way that, after deformation, they remain straight and also remain fastened together at D as shown in Figure (c)

- Since the deformations of the bars are very small fractions of the lengths, we can replace the arcs by the tangents to the arcs at D_{1} and D_{2} and obtain the intersection D_{4} as an approximation to the location of D_{3} Fig (d).

Introduction to Mechanics of deformable

bodies

$\delta_{H}=\delta_{C D}=0.0915 \mathrm{~mm}$
$\delta_{V}=D_{2} F+F D_{4}=D G+F G=\sqrt{ } 2 \times \delta_{B D}+\delta_{C D}=1.77 \mathrm{~mm}$

(c).

(d)

Introduction to Mechanics of deformable

innovate

Example

The stiff horizontal beam $A D$ in Figure (a) is supported by two soft copper rods $A C$ and $B D$ of the same cross-sectional area but of different lengths. The load-deformation diagram for the copper is shown In Figure (b). A vertical load of 150 kN is to be suspended from a roller which rides on the horizontal beam. We do not want the roller to move after the load is put on, so we wish to find out where to locate the roller so that the beam will still be horizontal in the deflected position.

Introduction to Mechanics of deformable

Introduction to Mechanics of deformable

bodies

1. Force equilibrium

$$
\begin{array}{ll}
\Sigma F_{y}=0=F_{A}+F_{B}-150 & --1 \\
\Sigma M_{@ A}=0=F_{B} \times 1-150 \times c & ---1(\mathrm{~A})
\end{array}
$$

2. Geometric compatibility

$$
\delta_{A}=\delta_{B}
$$

from the lengths of the bars

$$
\frac{\delta_{A}}{L_{A}}=\frac{\delta_{B}}{L_{A}}=\frac{\delta_{B}}{1.3}=2 \times \frac{\delta_{B}}{2.6}=2 \times \frac{\delta_{B}}{L_{B}} \quad--3
$$

Introduction to Mechanics of deformable bodies

innovate
3. Force-deformation relation

In given problem, force and deformation are related with Figure (b).
e.g. if we choose δ_{B} / L_{B} in diagram equal to 0.001 then corresponding value of F_{B} / A_{B} would be $74 \mathrm{MN} / \mathrm{m}^{2}$. --- 4

Equations 1,3 and 4 represent our analysis of the physics of the problem. We must combine
 1,3 and 4 mathematically to find the correct location of the roller.

Introduction to Mechanics of deformable bodies

Dividing equation 1 by A_{A} and substituting $A_{A}=A_{B}=1300 \mathrm{~mm}^{2}$

$$
\frac{F_{A}}{A_{A}}+\frac{F_{B}}{A_{A}}=\frac{150}{A_{A}} \Rightarrow \frac{F_{A}}{A_{A}}+\frac{F_{B}}{A_{B}}=115 \frac{M N}{m^{2}}
$$

Procedure to proceed further

1. Select an arbitrary value of δ_{B} / L_{B}.
2. Using equation 3 , obtain δ_{A} / L_{A}.
3. Obtain F_{B} / A_{B} and F_{A} / A_{A} from Figure (b) as explained in equation 4.
4. Check whether these values satisfy equation 5 .
5. If equation 5 is not satisfied, make a new guess for δ_{B} / L_{B} and obtain new values for $\delta_{A} / L_{A}, F_{A} / A_{A}$ and F_{B} / A_{B}.

Introduction to Mechanics of deformable

 bodies6. Proceeding in this way, we find the points a and b in Figure (b). From these points,

$$
\begin{aligned}
& \frac{\delta_{B}}{L_{B}}=0.0005 \Rightarrow \frac{F_{B}}{A_{B}}=41 \mathrm{MN} / \mathrm{m}^{2} \Rightarrow F_{B}=53.3 \mathrm{kN} \\
& \frac{\delta_{A}}{L_{A}}=0.001 \Rightarrow \frac{F_{A}}{A_{A}}=74 \mathrm{MN} / \mathrm{m}^{2} \Rightarrow F_{A}=96.2 \mathrm{kN}
\end{aligned}
$$

$$
\delta_{A}=\delta_{B}=1.3 \mathrm{~mm}
$$

Substituting this value for F_{B} in the equation 1(A), we obtain the required location of the roller

$$
c=0.355 \mathrm{~m}
$$

Introduction to Mechanics of deformable

 bodies
Analysis of thin ring

Example

A thin ring of internal radius r, thickness t, and width b is subjected to a uniform pressure p over the entire internal surface, as shown in figure below. We would like to determine the forces in the ring and deformation of the ring due to the
 internal pressure.

Introduction to Mechanics of deformable

 bodies1. Force equilibrium
F_{R} must be zero because Newton's third law and symmetry argument, both together are not satisfied at a time. Let's consider upper half of the ring

$$
\begin{align*}
& \Delta F_{p}=p[b(r \Delta \theta)]--(\mathrm{a}) \\
& \Delta F_{y}=\Delta F_{p} \sin \theta=p[b(r \Delta \theta)] \sin \theta \tag{b}
\end{align*}
$$

$$
\begin{equation*}
\sum F_{y}=\int_{\theta=0}^{\theta=\pi} p b r \sin (\theta) d \theta-2 F_{T}=0 \tag{c}
\end{equation*}
$$

$$
\begin{equation*}
F_{T}=p r b \tag{d}
\end{equation*}
$$

$$
\begin{equation*}
\sum F_{y}=p(2 r b)-2 F_{T}=0 \tag{e}
\end{equation*}
$$

Introduction to Mechanics of deformable

 bodies2. Force-deformation relation

$$
\begin{equation*}
\delta_{T}=\frac{F_{T}[2 \pi(r+t / 2)]}{(b t) E}=\frac{2 \pi p r^{2}}{t E}\left(1+\frac{t}{2 r}\right) \tag{f}
\end{equation*}
$$

3. Geometric compatibility

$$
\delta_{R}=\frac{\delta_{T}}{2 \pi} \quad--(\mathrm{g})
$$

$$
\begin{equation*}
\delta_{R}=\frac{p r^{2}}{t E}\left(1+\frac{t}{2 r}\right) \tag{h}
\end{equation*}
$$

$$
\begin{equation*}
\delta_{R}=\frac{p r^{2}}{t E} \tag{i}
\end{equation*}
$$

Introduction to Mechanics of deformable

Problem

A composite hoop consists of a brass hoop of $300-\mathrm{mm}$ internal radius and $3-\mathrm{mm}$ thickness, and a steel hoop of $303-\mathrm{mm}$ internal radius and 6 - mm radial thickness. Both hoops are 6 - mm thick normal to the hoop. If radial pressure of $1.4 \mathrm{MN} / \mathrm{m}^{2}$ is put in the brass hoop, estimate the tangential forces in the brass and steel hoops.

Introduction to Mechanics of deformable bodies

Analysis of flexible drives

Example

In a test on an engine, a braking force is supplied through a lever arm EF to a steel brake CBAD which is in contact with half the circumference of a 600 mm diameter flywheel. The brake band is 1.6 mm thick and 50 mm wide and is lined with a relatively soft material which has a kinetic coefficient of friction of $f=0.4$ with respect to the rotating flywheel. The operator wishes to predict
 how much elongation there will be in the section $A B$ of the brake band when the braking force is such that there is a tension of 40 kN in the section $B C$ of the band.

Introduction to Mechanics of deformable bodies

1. Force equilibrium

$$
\sum F_{r}=\Delta N-T \sin \frac{\Delta \theta}{2}-(T+\Delta T) \sin \frac{\Delta \theta}{2}=0 \quad---1
$$

$$
\Delta N-T \frac{\Delta \theta}{2}-(T+\Delta T) \frac{\Delta \theta}{2}=0 \quad \Rightarrow \quad \Delta N=T \Delta \theta \quad--2
$$

$$
\sum F_{\theta}=(T+\Delta T) \cos \frac{\Delta \theta}{2}-T \cos \frac{\Delta \theta}{2}-f \Delta N=0 \quad---3
$$

$$
(T+\Delta T)-T-f \Delta N=0 \quad \Rightarrow \quad \Delta T=f \Delta N \quad---4
$$

From 2 \& 4

$$
\Delta T=f T \Delta \theta \quad \Rightarrow \quad \frac{\Delta T}{T}=f \Delta \theta \quad \Rightarrow \quad \frac{d T}{T}=f d \theta
$$

Introduction to Mechanics of deformable bodies

At $\theta=0 ; T=T_{A D}$ and $\theta=\pi ; T=T_{B C}$

$$
\int_{T_{t o}}^{T_{\text {acc }}} \frac{d T}{T}=f \int_{0}^{\pi} d \theta \quad---6
$$

$$
\begin{array}{|ll|}
\hline \frac{T_{B C}}{T_{A D}}=e^{f \pi} & --7 \\
\hline
\end{array}
$$

where e is the base of natural logarithms. $T_{A D}$ can be calculated by substituting $T_{B C}=40 \mathrm{kN}$ and $f=0.4$ in equation 7 .

Suppose, if we assume T_{1} is tension in tight side; T_{2} is tension in slack side and θ is angle of contact in radians, then equation 7 can be written in the following form

$$
\begin{array}{|ll|}
\hline \frac{T_{1}}{T_{2}}=e^{f \theta} & --8 \\
\hline
\end{array}
$$

Introduction to Mechanics of deformable

2. Force-deformation relation

Consider the deflection of an small element of length $R \Delta \theta$ and cross-section area A

$$
\Delta \delta=\frac{T R \Delta \theta}{A E} \quad \Rightarrow \quad d \delta=\frac{T R d \theta}{A E} \quad--9
$$

3. Geometric compatibility

Total elongation of the brake band from A to $B, \delta_{A B}$, is the sum of the tangential elongations of small elements of length $R \Delta \theta$.

$$
\delta_{A B}=\int_{\theta=0}^{\theta=\pi} d \delta=\int_{\theta=0}^{\theta=\pi} \frac{T R d \theta}{A E} \quad---10
$$

$$
\delta_{A B}=\frac{T_{A D} R}{A E} \int_{0}^{\pi} e^{f \theta} d \theta=\frac{T_{A D} R}{A E f}\left(e^{f \pi}-1\right) \quad---11
$$

Introduction to Mechanics of deformable

 bodies
Problem

A hawser from a ship is wrapped four times around a rotating capstan as shown in the figure. The dockworker pulls with a force of 200 N. What is the maximum force the man can exert on the boat if the coefficient of friction between the capstan and hawser is 0.3 ?

Introduction to Mechanics of deformable bodies

Problem
A brake is designed as shown. A $25 \times 1.5 \mathrm{~mm}$ steel band restrains the wheel from turning when a $225 \mathrm{~N}-\mathrm{m}$ torque is applied. The friction coefficient is 0.4 . Find the tensions T_{1} and T_{2} that just keep the wheel from rotating.

Introduction to Mechanics of deformable bodies

innovate

Statically indeterminate situations

These are the situations in which deformations must be considered to determine forces.

Example

Figure shows the pendulum of a clock which has a12N weight suspended by three rods of 760 mm length. Two of the rods are made of brass and the third of steel. We wish to know how much of the 12 N suspended weight is carried by each rod. Take $E_{S}=200 \mathrm{GPa}$ and $E_{B}=100 \mathrm{Gpa}$.

Introduction to Mechanics of deformable

 bodies
Solution

1. Force equilibrium:

$$
\sum F_{y}=12-F_{S}-2 F_{B}=0 \quad--1
$$

2. Geometric compatibility:

$$
\begin{array}{|ll|}
\delta_{S}=\delta_{B} & ---2 \\
\hline
\end{array}
$$

3. Force-deformation relation:

$$
\delta_{S}=\frac{F_{S} L_{S}}{A_{S} E_{S}} \quad \text { and } \quad \delta_{B}=\frac{F_{B} L_{B}}{A_{B} E_{B}} \quad--3
$$

From equations 1 to 3

$$
F_{S}=2.55 \mathrm{~N} \quad \text { and } \quad F_{B}=4.72 \mathrm{~N}
$$

Introduction to Mechanics of deformable bodies

Problem

A square reinforce-concrete pier $0.3 \times 0.3 \mathrm{~m}$ in cross section and 1.2 m high is loaded as shown in the figure. The concrete is strengthened by the addition of eight vertical $25 \times 25 \mathrm{~mm}$ square steel reinforcing bars placed symmetrically about the vertical axis of the pier. Find the stress (force per unit area) in the steel and concrete and the deflection.

Take $E_{C}=17 \mathrm{GPa}$ and $E_{S}=200 \mathrm{GPa}$.

Introduction to Mechanics of deformable

ELASTIC ENERGY; CASTIGLIANO'S THEOREM

Conservative systems:
When work is done by an external force on certain systems, their internal geometric states are altered in such a way that they have the potential to give back equal amounts of work whenever they are returned to their original configurations.
e.g. Elastic spring

Introduction to Mechanics of deformable

 bodiesStrain Energy:
Consider the elastic, but not necessarily linear, spring in Fig (a). Let the spring undergo a gradual elongation process during which the external force F remains in equilibrium with the internal tension. The potential or strain energy U associated with an elongation δ is defined to be the work done by F in this process

$$
U=\int_{0}^{\delta} F d \delta
$$

Introduction to Mechanics of deformable

 bodiesComplementary Energy:
When the point of application of a variable force F undergoes a displacement δ, the complementary work is done on the system.

When complementary work is done on certain systems, their internal force states are altered in such a way that they are capable of giving up equal amounts of complementary work when they are returned to their original force states. Under these circumstances the complementary work done on such a system is said to be stored as complementary energy.

$$
U^{*}=\int_{0}^{\delta} \delta d F
$$

Introduction to Mechanics of deformable

 bodiesCastigliano's theorem:
It states that if the total complementary energy U^{*} of a loaded elastic system is expressed in terms of the loads, the in-line deflection at any particular loading point is obtained by differentiating U^{*} with respect to the load at that point.

$$
\delta=\frac{\partial U^{*}}{\partial P}
$$

[] For nonlinear systems, $U \neq U^{*}$

- For linear systems, $U=U^{*}$

Strain Energy of linear spring is $U=\frac{1}{2} F \delta=\frac{1}{2} k \delta^{2}=\frac{1}{2} \frac{F^{2}}{k}$

Introduction to Mechanics of deformable

[This chapter, we will consider application of castigliano's theorem only for linear elastic systems.

For linear system, complementary energy is equal to the strain energy.
[Let us consider a system, consists of N elastic elements. External force P_{i} acting at point A_{i}. We wish to know the deflection of any point A_{i}.

Total strain energy of the system is $U=\sum_{i=1}^{n} \frac{1}{2} \frac{F_{i}^{2}}{k_{i}}$
where F_{i} is the internal force induced in elastic member and it should be expressed in terms of P_{i}

Introduction to Mechanics of deformable

 bodies\square Deformation $\left(\delta_{i}\right)$, at point A_{i} in the direction of P_{i} is given by

$$
\delta_{i}=\frac{\partial U}{\partial P_{i}}
$$

Important
\square If, we may wish to know deflection (may be in horizontal or vertical or in any other direction) at a point where external force is zero .
\square In such case a fictitious force Q is to be considered at that point.
\square Express internal forces in terms of Q.
\square Deflection at that point in the direction of Q is given by $\partial \mathrm{U} / \partial Q$ and setting $Q=0$.

Introduction to Mechanics of deformable

 bodies
Example

Consider the system of two springs shown in Figure and determine the deflections using Castigliano's theorem.

Introduction to Mechanics of deformable

 bodies
Solution

From equilibrium requirements, the spring forces (F_{1} and F_{2}) are expressed as

$$
F_{1}=P_{1}+P_{2} \quad \& \quad F_{2}=P_{2}
$$

The total elastic energy is given by

$$
U=U_{1}+U_{2}=\frac{\left(P_{1}+P_{2}\right)^{2}}{2 k_{1}}+\frac{P_{2}^{2}}{2 k_{2}}
$$

The deflections (δ_{1} and δ_{2}) are

$$
\delta_{1}=\frac{\partial U}{\partial P_{1}}=\frac{P_{1}+P_{2}}{k_{1}} \quad \text { and } \quad \delta_{2}=\frac{\partial U}{\partial P_{2}}=\frac{P_{1}+P_{2}}{k_{1}}+\frac{P_{2}}{k_{2}}
$$

Introduction to Mechanics of deformable

 bodies
Example

Figure shows a triangular frame supporting a load of 20kN. Using Castigliano's theorem, determine vertical and horizontal deflection of point D.

Introduction to Mechanics of deformable

 bodies
Solution

\square Vertical force say \boldsymbol{P} is acting at point D ($\boldsymbol{P}=20 \mathrm{kN}$).

Horizontal force is zero at point D.
\square Lets consider a fictitious force \mathbf{Q} acting at point D in horizontal direction as shown in figure.

Express $F_{B D}$ and $F_{C D}$ in terms of P and Q.

Introduction to Mechanics of deformable

 bodiesFrom FBD of joint D,

$$
\begin{aligned}
& \sum F_{Y}=0=F_{B D} \sin 45-P \quad \Rightarrow \quad F_{B D}=\sqrt{2} P \\
& \sum F_{X}=0=Q-F_{C D}-F_{B D} \cos 45 \quad \Rightarrow \quad F_{C D}=Q-P
\end{aligned}
$$

Total strain energy, U of the system is

$$
U=U_{B D}+U_{C D}=\frac{F_{B D}{ }^{2}}{2 k_{B D}}+\frac{F_{C D}^{2}}{2 k_{C D}}=\frac{2 P^{2}}{2 k_{B D}}+\frac{(Q-P)^{2}}{2 k_{C D}}
$$

where $k_{B D}$ and $k_{C D}$ are stiffness of bar $B D$ and $C D$

$$
\begin{aligned}
& k_{B D}=\frac{A_{B D} \times E}{L_{B D}}=\frac{491 \times 205 \times 10^{3}}{3 \sqrt{2} \times 10^{3}}=23.72 \times 10^{3} \mathrm{~N} / \mathrm{mm} \\
& k_{C D}=\frac{A_{C D} \times E}{L_{C D}}=\frac{3200 \times 205 \times 10^{3}}{3 \times 10^{3}}=218.67 \times 10^{3} \mathrm{~N} / \mathrm{mm}
\end{aligned}
$$

Introduction to Mechanics of deformable

 bodiesVertical deflection of point D,

$$
\begin{aligned}
& \delta_{V D}=\frac{\partial U}{\partial P}=\frac{4 P}{2 k_{B D}}+\frac{2(P-Q)}{2 k_{C D}} \quad \text { Setting } P=20 \mathrm{kN} \text { and } Q=0 \\
& \delta_{V D}=\frac{4 \times 20 \times 10^{3}}{2 \times 23.73 \times 10^{3}}+\frac{2 \times\left(20 \times 10^{3}-0\right)}{2 \times 218.66 \times 10^{3}}=1.77 \mathrm{~mm}
\end{aligned}
$$

horizontal deflection of point D,

$$
\delta_{H D}=\frac{\partial U}{\partial Q}=0+\frac{2(Q-P)}{2 k_{C D}}=\frac{2 \times\left(0-20 \times 10^{3}\right)}{2 \times 218.66 \times 10^{3}}=-0.091 \mathrm{~mm}
$$

-ve sign indicates that the horizontal deflection of point D is in opposite to the direction of \boldsymbol{Q} i.e. rod $C D$ gets compressed.

Introduction to Mechanics of deformable

bodies

Problem

A very stiff horizontal member is supported by two vertical steel rods of different cross section area and length. If a vertical load of 120 kN is applied to the horizontal beam at point B, estimate the vertical deflection of the point B.

Introduction to Mechanics of deformable

References

1. Introduction to Mechanics of Solids by S. H. Crandall et al (In SI units), McGraw-Hill
